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Abstract
The paper deals with some spectral properties of (mostly infinite) quantum and
combinatorial graphs. Quantum graphs have been intensively studied lately due
to their numerous applications to mesoscopic physics, nanotechnology, optics
and other areas. A Schnol-type theorem is proven that allows one to detect that
a point λ belongs to the spectrum when a generalized eigenfunction with an sub-
exponential growth integral estimate is available. A theorem on spectral gap
opening for ‘decorated’ quantum graphs is established (its analogue is known
for the combinatorial case). It is also shown that if a periodic combinatorial or
quantum graph has a point spectrum, it is generated by compactly supported
eigenfunctions (‘scars’).

PACS numbers: 02.10.Ab, 02.30.Jr, 05.45.Mt
Mathematics Subject Classification: 35Q, 35P, 05C

1. Introduction

We will use the name ‘quantum graph’ for a graph considered as a one-dimensional singular
variety and equipped with a self-adjoint differential ‘Hamiltonian’, e.g. [10, 19, 26, 37].
Such objects naturally arise as simplified models in mathematics, physics, chemistry and
engineering, in particular when one needs to consider wave propagation through a ‘mesoscopic’
quasi-one-dimensional system that looks like a thin neighbourhood of a graph. One can
mention among the variety of areas of applications of quantum graphs the free-electron theory
of conjugated molecules, quantum chaos, mesoscopic physics (circuits of quantum wires),
waveguide theory, nanotechnology, dynamical systems and photonic crystals. We will not
discuss any details of these origins of quantum graphs, referring the reader instead to [10, 12,
19, 20, 23, 25–29, 32–34, 37] for further information, recent surveys and literature.

In this paper, which is a continuation of [26], we present some results concerning spectra
of quantum graphs, as well as of their combinatorial counterparts. While the (combinatorial)

0305-4470/05/224887+14$30.00 © 2005 IOP Publishing Ltd Printed in the UK 4887

http://dx.doi.org/10.1088/0305-4470/38/22/013
http://stacks.iop.org/ja/38/4887


4888 P Kuchment

spectral graph theory has been around for quite some time [4–6], the spectral theory of quantum
graphs has not yet been developed well enough (see the collection [37] for recent developments
and literature).

Let us describe the contents of the paper. The next section introduces the necessary notions
concerning quantum graphs. Section 3 contains a Schnol–Bloch-type theorem. Such theorems
show how the existence of a generalized eigenfunction with some control on its growth (e.g.,
bounded) allows one to claim that the corresponding point of the real axis is in fact in the
spectrum (or to estimate its distance from the spectrum). Section 4 deals with opening gaps in
the spectrum of a quantum graph by ‘decorating’ the graph by an additional graph attached to
each vertex. Section 5 discusses point spectra of periodic quantum graphs. It is shown that the
corresponding eigenspaces are generated by compactly supported eigenfunctions. The results
of all the sections have their counterparts in the combinatorial setting as well.

It is interesting to note relations of the presented results with their counterparts for PDEs.
The Schnol-type theorem is parallel to the classical one known for PDEs [8, 15, 40], except
for the integral formulation that we adopt, which extends its applicability. The resonant gap
opening procedure works to some extent for PDEs as well [36], but it is less clear and less
studied there. Finally, the discussion of the bound states for periodic problems does not
make much sense for PDEs, since periodic second-order elliptic operators with ‘reasonable’
coefficients have absolutely continuous spectrum1.

The reader should note that although all the essential ingredients of the proofs are
presented, due to size limitations the proofs are condensed and in some cases provided under
some additional restrictions that can be removed. A more detailed exposition will appear
elsewhere.

2. Quantum graphs

A graph � (see figure 1) consists of a finite or countably infinite set of vertices V = {vi}
and a set E = {ej } of edges connecting the vertices2. Each edge e can be identified with a
pair (vi, vk) of vertices. Loops and multiple edges between vertices are allowed. The degree
(valence) dv of a vertex v is the number of edges containing the vertex and is assumed to be
finite and positive.

Definition 1. A graph � is said to be a metric graph, if its each edge e is assigned a positive
length le ∈ (0,∞).3

Each edge e will be identified with the segment [0, le] of the real line, which introduces a
coordinate xe along e. In most cases we will denote the coordinate by x, omitting the subscript.
A metric graph � can be equipped with a natural metric ρ(x, y) and thus considered as a metric
space. The graph is not assumed to be embedded into a Euclidean space or a more general
Riemannian manifold. In some applications (e.g., in modelling quantum wire circuits) such a
natural embedding exists, and then the coordinate x is usually the arc length. In some other
cases (e.g., in quantum chaos), no embedding is assumed. All graphs under the consideration
are connected.

We will also assume that the following additional condition is satisfied:

1 Although this statement is not yet proven in complete generality, in many cases it has been established (e.g.,
[3, 13] and references therein).
2 In this text we will be mostly interested in infinite graphs.
3 Sometimes edges of infinite length are allowed in quantum graphs. This is for instance the case when one considers
scattering problems.
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Figure 1. Graph �.

Condition A. The lengths of all the edges are bounded below and above by finite positive
constants: le ∈ [l0, L] for some l0 > 0, L < ∞.

Condition A obviously matters for graphs with infinitely many edges only. One can obtain
some results without this condition as well, but we will not address this issue here.

Now one imagines a metric graph � as a one-dimensional variety, with each edge equipped
with a smooth structure, and with singularities at the vertices:

The reader should note that the points of a metric graph are not only its vertices, as is
normally assumed in the combinatorial setting, but all intermediate points x on the edges as
well. So, while a function on a combinatorial graph is defined on the set V of its vertices,
functions f (x) on a quantum graph � are defined along the edges (including the vertices).
One can naturally define the Lebesgue measure dx on the graph.

We will sometimes assume that a root vertex o is singled out (the results will not depend
on the choice of the root). If this is done, one can define a ‘norm’ ρ(x) of a point x as

ρ(x) = ρ(o, x).

This allows us to define for any r � 0 the ball Br of radius r:

Br = {x ∈ � | ρ(x) � r}.
The last step that is needed to finish the definition of a quantum graph is to introduce a

differential Hamiltonian on �. The operators of interest in the simplest cases are the second
arc length derivative

f (x) → −d2f

dx2
, (1)

or a more general Schrödinger operator

f (x) →
(

1

i

d

dx
− A(x)

)2

f (x) + V (x)f (x). (2)

Here x denotes the coordinate xe along each edge e.4

Higher order differential and even pseudo-differential operators arise as well (see, e.g.,
the survey [25] and references therein). We, however, will concentrate here on second-order
differential operators only.

In order for the definition of these self-adjoint Hamiltonians operators to be complete, one
needs to describe their domains. For reasonable classes of potentials (e.g., measurable and
bounded), the natural conditions require that f belongs to the Sobolev space H 2(e) on each

4 Note that in order to introduce the magnetic operators, one needs the graph’s edges to be directed. This is not
required in the absence of the magnetic potential.
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edge e. One, however, clearly also needs to impose boundary value conditions at the vertices.
These have been studied and described completely using both the standard extension theory
of symmetric operators, as well as the symplectic geometry approach [11, 16, 19, 26, 32–34].
The simplest one is the so-called Neumann condition5{

f is continuous at each vertex v∑
v∈e

df

dxe
(v) = 0 at each vertex v. (3)

3. Schnol–Bloch theorems

Schnol-type theorems in PDEs ([40], see also [8, 15, 22, 41]) treat the following question.
If there exists a nonzero L2-solution of the equation Hu = λu, then clearly λ is a point
of the point spectrum of H. Is there a similar test for detecting that λ belongs to the whole
spectrum? Imagine that one has a solution (a generalized eigenfunction) of a self-adjoint
equation Hu = λu, and that one has some control of the growth of this solution (e.g., it is
bounded). When can one guarantee that λ is a point of the spectrum of H? For the Schrödinger
equation in R

n with a potential bounded from below, the standard Schnol theorem [8, 15, 40]
says that existence of a sub-exponentially growing solution implies that λ ∈ σ(H). A version
of this theorem is known in solid-state physics as the Bloch theorem [1, 22, 38]: if H is a
periodic Schrödinger operator, then existence of a bounded eigenfunction corresponding to
a point λ guarantees that λ ∈ σ(H). On the other hand, for the hyperbolic plane Laplace–
Beltrami operator �H , there is an infinite-dimensional space of bounded solutions of �H u = 0.
Indeed, using the Poincaré unit disk model of the hyperbolic plane, one has �H = (1−|z|2)2�,
where � is the Euclidean Laplacian (see, e.g., section 4 of the introduction in [17], or any
other book on hyperbolic geometry). Thus, all bounded harmonic functions u on the unit disk
(which form an infinite-dimensional space) satisfy the equation �Hu = 0. However, the point
0 is still not in the spectrum of �H (e.g., [31]). This happens due to the exponential growth
of the volume of the hyperbolic ball of radius r. A similar Schnol-type theorem here would
need to request some decay of the generalized eigenfunction. The purpose of this section is to
establish a Schnol–Bloch-type theorem for graphs.

Let � be a rooted connected infinite quantum graph satisfying the condition A and
equipped with the Hamiltonian − d2

dx2 and any self-adjoint vertex conditions6.

Theorem 2 (a Schnol-type theorem). Let the graph � satisfy the above conditions and λ ∈ R.
If there exists a function φ(x) on � that belongs to the Sobolev space H 2 on each edge, satisfies
all vertex conditions, the equation

− d2φ

dx2
= λφ for a.e. x ∈ �, (4)

and the sub-exponential growth condition∫
Br

|φ(x)|2 dx � Cε eεr (5)

for any ε > 0, then λ ∈ σ(H).

This theorem implies in particular the following:

5 This name seems to be more appropriate than the often used name Kirchhoff condition; in particular for vertices of
degree 1 one obtains the standard Neumann condition. Such conditions mean that the quantum probability currents
at each vertex add up to zero.
6 More general Schrödinger operators can be treated similarly; see the remark after the theorem.
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Corollary 3 (a Bloch-type theorem). Let the graph � satisfy conditions of the theorem and be
of a sub-exponential growth (i.e., the volume of Br grows sub-exponentially). If there exists a
bounded solution of the equation (4), then λ ∈ σ(H).

Simple examples show that existence of a bounded solution does not guarantee that
λ ∈ σ(H), if the graph is of exponential growth (i.e., a regular tree of degree 3 or higher).

Proof of theorem 2. Let us define for any r > 0 the following compact subset �r of the graph:
it consists of all points of the edges with both ends in Br . The following inclusions hold:

�r−L ⊂ Br ⊂ �r+L. (6)

We hence conclude that the integral sub-exponential growth condition (5) holds if one replaces
Br by �r . Let us introduce the function

J (r) :=
∫

�r

|φ(x)|2 dx. (7)

Given an ε > 0, one can find a sequence rk → ∞ such that

J (rk + L) � eεJ (rk),

otherwise one gets a contradiction with the sub-exponential growth condition. We remind the
reader that each set �r consists of complete edges only.

Let θ(x) be any smooth function on [0, l0/4] such that it is identically equal to 1 in a
neighbourhood of 0 and identically equal to zero close to l0/4. Here l0 is the lower bound for
the lengths of all edges of �, which was assumed to be strictly positive. We define a cut-off
function θk on �. It is equal to 1 on �rk

and to 0 on all edges which do not have vertices in
�rk

. We only need to define it along the edges that have exactly one vertex in �rk
. Let e be an

edge whose one vertex v is contained in �rk
. The function θk is defined to be equal to 1 along

e starting from v till the middle of the edge, then it is continued by an appropriately shifted
copy of θ(x) (which by construction will become zero at least at the distance le/4 from the end
of the edge), and stays zero after that. Note that due to the construction, any derivative of the
functions θk(x) is uniformly bounded with respect to k and x ∈ �. Besides, these functions
are identically equal to 1 or 0 around any vertex.

We can now construct a sequence of approximate eigenfunctions φk(x) of the operator H
as follows:

φk(x) = θk(x)φ(x).

One can note that the functions φk(x) satisfy the same boundary conditions that φ did, since
the factors θk are identically equal to 1 or 0 around the vertices. This implies that φk(x)

belongs to the domain of H in L2(�). Besides, we clearly have

‖φk‖2 � J (rk). (8)

One also notes that the functions φk are supported in �rk+L.
Let us now apply H − λ to these test functions:

(H − λ)φk = θk(−φ′′ − λφ) − 2θ ′
kφ

′ − θ ′′
k φ = −2θ ′

kφ
′ − θ ′′

k . (9)

We have used here that φ satisfies (4).
Using the properties of the cut-off functions θk , one gets

‖(H − λ)φk‖2 � C

∫
x∈ supp θ ′

k

(|φ(x)|2 + |φ′(x)|2) dx. (10)
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Since the supports of the derivatives θ ′
k belong to the interiors of the edges and are at a qualified

distance from the vertices, we have standard Schauder estimates for∫
x∈ supp θ ′

k

|φ′(x)|2 dx

by for instance the integral∫
ρ(x)∈[rk+ l0

4 ,rk+L− l0
4 ]

|φ(x)|2 dx.

This leads to the estimate

‖(H − λ)φk‖2 � C

∫
ρ(x)∈[rk+ l0

4 ,rk+L− l0
4 ]

|φ(x)|2 dx

� C(J (rk + L) − J (rk)) � C(eε − 1)J (rk) � C(eε − 1)‖φk‖2, (11)

where the constant C does not depend on k, ε. Since ε > 0 was arbitrary, we conclude that
λ ∈ σ(H). �

Remark 4.

1. If one has a generalized eigenfunction that satisfies (5) for some fixed ε, rather than an
arbitrary one as in the theorem, one cannot conclude that λ ∈ σ(H). However, it is easy
to modify the proof to estimate from above its distance dist(λ, σ (H)) to the spectrum,
which when ε → 0 will reproduce the statement of the theorem.

2. The same result holds for more general Hamiltonians, e.g. for Schrödinger operators
− d2

dx2 + q(x) with bounded from below potentials q(x) � q0 > −∞ and any self-adjoint
vertex conditions.

3. Analogous results, with essentially the same (a little bit simpler) proofs hold for discrete
operators on infinite combinatorial graphs as well. One can note then the relation of the
Schnol-type theorems to the amenability properties of discrete groups and graphs (e.g.,
the Følner condition) and to the notion of infinite Ramanujan graphs.

The author will provide details concerning these remarks elsewhere.

4. Spectral gaps created by graph decorations

Existence of spectral gaps is known to be one of the spectral features of high interest in the
various fields ranging from solid-state physics to photonic crystal theory, to waveguides, to
theory of discrete groups and graphs. A standard way of trying to create spectral gaps is to
make a medium periodic (e.g., [1, 22, 23, 38]). This is why most photonic crystal structures
that are being created are periodic. However, periodicity neither guarantees existence of gaps
(except in the 1D case), nor does it allow any easy control of gap locations or sizes, nor is
it a unique way to achieve spectral gaps. It has been noted by several researchers (the first
such references known to the author are [35, 36]) that spreading small geometric scatterers
throughout the medium (not necessarily in a periodic fashion) might lead to spectral gaps as
well. This has been confirmed on quantum graph models in [2, 9], and finally made very clear
and precise in the case of combinatorial graphs in [39]. It was proposed in [39] that a simple
procedure of ‘decorating’ a graph leads to a very controllable gap structure. We will show
here that up to some caveat, the same procedure works in the case of quantum graphs. Let us
describe the decoration procedure of [39] adopted to the quantum graph situation.
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Figure 2. Decoration of a quantum graph �0 by �1.

Let �0 be a quantum graph satisfying the condition A and such that the corresponding
Hamiltonian is the negative second derivative along the edges with the Neumann conditions
(3) at the vertices7. Let also �1 be a finite connected quantum graph with the same type of the
Hamiltonian, with any self-adjoint vertex conditions. The graph �1 will be our ‘decoration.’
We assume that a root vertex v1 is singled out in �1. The decoration procedure works as
follows: the new graph � is obtained by attaching a copy of �1 to each vertex v of �0 and
identifying v1 with v (see figure 2). Note that there is a natural embedding �0 ⊂ �. We will
denote by V, V0 and V1 the vertices sets of �,�0 and �1 correspondingly. The Hamiltonian H
on � is defined as the negative second derivative on each edge, with the Neumann conditions
at each vertex of �0 (including the former v1 vertices of the decorations) and the initially
assumed conditions on V1\v1, repeated on each attached copy of the decoration.

Dirichlet eigenvalues of each edge (which are clearly directly related to the edge length
spectrum) often play an exceptional role in quantum graph considerations (see the discussions
below). Let {lj } be the lengths of the edges of the original graph �0. Then we define the
Dirichlet spectrum σD of �0 as the closure of the set

∪
n∈(Z\0),j

{
π2n2

/
l2
j

} ⊂ R.

If the graph �0 is finite, no closure is required.
Let us also define the operator H1 on the decoration graph �1 that acts as the negative

second derivative on each edge and satisfies the self-adjoint conditions assumed before on
V1\v1 and zero Dirichlet condition at v1.

We can now state the result of this section, which was previously announced in [24, 27].
The conditions of the theorem can be weakened, but we consider for brevity the simplest case
here, which seems already rather useful.

Theorem 5. Let λ0 ∈ R\σD be a simple eigenvalue of H1 with the eigenfunction ψ such that
the sum of the derivatives of ψ at v1 along all outgoing edges is not zero. Then there is a
punctured neighbourhood of λ0 that does not belong to the spectrum σ(H) of �.

Proof. We will prove here the theorem for the case of a finite graph �0 only. The case of
an infinite graph is a little bit more technical and will be considered elsewhere. The proof
consists of removing the decorations and replacing them by altered vertex conditions. This is

7 More general conditions can also be considered.
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done simultaneously and in the same way at each vertex v ∈ V0 ⊂ V , so we will describe it
for one vertex v, which will be identified with v1 ∈ �1.

Let us define a function that we will call Dirichlet-to-Neumann function �(λ) for �1.8 It
is defined in a punctured neighbourhood of λ0 not intersecting σD as follows. If λ �= λ0 is a
regular point of H1, one can uniquely solve the problem


−u′′ = λu on each edge of �1

u satisfies the prescribed boundary conditions on V1\v1

u(v1) = 1.

(12)

We denote by �(λ) the sum of the outgoing derivatives of the solution u(x) at the vertex v1.
�

Lemma 6. Under the conditions of the theorem, the Dirichlet-to-Neumann function �(λ) is
analytic in a punctured neighbourhood of λ0, with a first-order pole (with nonzero residue)
at λ0.

Proof of the lemma. Let ψ be the eigenfunction of H1 assumed in the statement of the
theorem. We denote by � �= 0 the sum of outgoing derivatives of ψ at v1. Let also f be a
function on �1 defined as follows: it is supported in a small neighbourhood of the vertex v1

(so small that it does not contain other vertices of �1), is equal to 1 near v1, and is smooth
inside the edges. We also denote by RH1(λ) = (H1 − λ)−1 the resolvent of H1. Then we can
represent the solution u of (12) as ũ + f , where

ũ = −RH1(λ)(−f ′′ − λf )

= −(λ − λ0)
−1〈−f ′′ − λf,ψ〉L2(�)ψ(x) + A(λ)

= −(λ − λ0)
−1�ψ(x) + A(λ).

Here A(λ) is analytic in a neighbourhood of λ0. Noting that the sums of the outgoing derivatives
at v1 of both functions u and ũ on �1 are the same, we see that �(λ) has a first-order pole at
λ0 with a nonzero residue. This proves the lemma.

Let now λ0 be as in the theorem. Suppose that u(x) is an eigenfunction of H corresponding
to an eigenvalue λ close to λ0. For any vertex v ∈ V0, we can solve the equation Hu = λu

on the decoration attached to v, using u(v) as the Dirichlet data. Then the sum of outgoing
derivatives of u at v along the edges of the decoration is equal to �(λ)u(v). Hence, the
eigenfunction equation for u on � can be rewritten on �0 solely as follows:


−u′′ = λu on each edge of �0

u is continuous at all vertices v ∈ V0∑
v∈e

du

dxe

(v) = −�(λ)u(v).
(13)

We will show now that (13) is impossible for a nonzero function u, if λ is close to λ0.
Indeed, with λ being at a positive distance from the Dirichlet spectrum σD of all edges, standard
estimates give ∑

e∈�0

‖u‖2
H 2(e) � C

∑
v∈V0

|u(v)|2. (14)

Now the Sobolev trace theorem implies∑
{e∈�0,v∈V0|v∈e}

∣∣∣∣ du

dxe

(v)

∣∣∣∣
2

� C
∑
v∈V0

|u(v)|2. (15)

8 This is in fact the Dirichlet-to-Neumann map for �1, if v1 is considered as this graph’s boundary.
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Figure 3. A ‘spider’ decoration.

Since �(λ) has a pole at λ0, for λ and λ0 sufficiently close, we get a contradiction between
(15) and the last equality of (13). �

Remark 7.

1. As was mentioned above, the proofs for the infinite case will be provided elsewhere.
2. The proof shows that the decorations attached to each vertex do not have to be the same

in order to achieve spectral gaps. One only needs to guarantee a uniform blow-up of all
the Dirichlet-to-Neumann functions at each vertex when λ → λ0. One can also provide
some estimates of the size of the gap.

3. This theorem claims that spectral gaps are guaranteed to arise around the spectrum of
the decoration (with the Dirichlet condition at the attachment point v1), unless one deals
with the Dirichlet spectrum of �0. Simple examples show that on the Dirichlet spectrum
one cannot guarantee a gap. For instance, if �0 contains a cycle consisting of edges
of equal (or commensurate) lengths, then the decoration procedure cannot remove the
eigenvalues that correspond to the sinusoidal waves running around this loop (see figure 4).
However, a modification of the decoration procedure works even in the presence of
Dirichlet spectrum. One just needs to introduce some ‘fake’ vertices along the edges at
appropriate locations and attach the decorations at these new vertices as well. This will
be described in detail elsewhere.

4. One can create gaps by a different decoration procedure rather than that of [39] described
above. Namely, instead of attaching sideways the little ‘flowers’ (or ‘kites,’ as they were
called in [39]) as in figure 2, one could incorporate an internal structure into each vertex,
putting a little ‘spider’ there as shown in figure 3. This graph decoration procedure was
probably used explicitly for the first time in [2] (see also [9]) for the same purpose of gap
creation. It will be shown elsewhere how gaps can be created using this construction (the
Dirichlet spectrum plays a distinguished role there as well).

5. Bound states on periodic graphs

It is ‘well known’ (albeit still not proven for the most general case) that elliptic periodic second-
order operators in R

n have no point spectrum9. In fact, their spectra are absolutely continuous.
In the case of Schrödinger operators with periodic electric potentials, this constituted the
celebrated Thomas’ theorem [44] (see also [22, 38]). There has been a significant progress in

9 This is not true for higher order operators [22].
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Figure 4. A loop bound state.

the last decade towards proving this for the general case. One can find the description of the
status of this statement for the general elliptic periodic operators in [3, 13, 23, 30]. The validity
of this theorem is intimately related to the uniqueness of continuation property (that is why it
fails for higher order operators), which does not hold on graphs. It is well known that bound
states, and even compactly supported eigenfunctions can easily be found in combinatorial and
quantum graphs, whether periodic or not. If, for instance, the quantum graph has a cycle with
commensurate lengths of the edges, one can easily create a sinusoidal wave supported on this
loop only (see figure 4). The question arises whether any other causes exist besides compactly
supported eigenfunctions, for appearance of the pure point spectrum on periodic graphs. It has
been shown previously by the author [21] that in the case of combinatorial periodic graphs,
existence of bound states implies existence of the compactly supported ones. In fact, the
eigenfunctions with compact support generate the whole eigenspace. We will show here that
the same holds true for periodic quantum graphs as well.

One should note that a point spectrum can arise for different reasons on graphs that are
not periodic, e.g. on trees. For instance, one can have bound states on infinite trees with
sufficiently fast-growing branching number [43].

We will consider an infinite combinatorial or quantum graph � with a faithful co-compact
action of the free abelian group G = Z

n (i.e., the space of G-orbits is a compact graph).
Let us treat the combinatorial case first, so let � be a combinatorial graph and A a

G-periodic finite difference (not necessarily self-adjoint) operator of a finite order acting on
l2(V ). Here, as before, V is the set of vertices of �. The first half of the following result is
proven in [21]:

Theorem 8. If the equation Au = 0 has a nonzero l2(V ) solution, then it has a nonzero
compactly supported solution. Moreover, the compactly supported solutions form a complete
set in the space of all l2-solutions.

Since this formulation is more complete than that in [21], we provide its brief proof here.

Proof. We will need to use the basic transform of Floquet theory (e.g., [22, 38]). Namely,
for any compactly supported (or sufficiently fast decaying) function u(v) on V , we define its
Floquet transform

u(v) �→ û(v, z) =
∑
g∈Z

n

u(gv)zg, (16)

where gv denotes the action of g ∈ Z
n on the point v ∈ V, z = (z1, . . . , zn) ∈ (C\0)n, and

zg = z
g1
1 × · · · × z

gn
n . We will also denote û(v, z) by û(z), where the latter expression is a



Quantum graphs 4897

function on W depending on the parameter z. Here W is a (finite) fundamental domain of the
action of the group G = Z

n on V . Note that images of the compactly supported functions are
exactly all finite Laurent series in z with coefficients in C

|W |.
We will also need the unit torus

T
n = {z ∈ C

n||zj | = 1, j = 1, . . . , n} ⊂ C
n.

It is well known and easy to establish [21, 22, 38] that the transform (16) extends to an
isometry (up to a possible constant normalization factor) between l2(V ) and L2(T

n, C
|W |).

After this transform, A becomes the operator of multiplication in L2(T
n, C

|W |) by a
rational |W | × |W | matrix function A(z). This means that nonzero l2-solutions of Au = 0 are
in one-to-one correspondence with C

|W |-valued L2-functions û on T
n such that A(z)û(z) = 0

a.e. on T
n. Since we assumed that u, and hence û is not a zero element of l2, we can conclude

that the set of points of the torus T
n over which the matrix A(z) has a non-trivial kernel,

has a positive measure. On the other hand, this set in C
n is given by the algebraic equation

det A(z) = 0 and thus is algebraic. The only way it can intersect the torus over a subset of
a positive measure is that it coincides with the whole space C

n. Hence, A(z) has a nonzero
kernel at any point z. Thus, its determinant is identically equal to zero. Considering this matrix
over the field Q of rational functions, one can apply the standard linear algebra statement that
claims existence of a nonzero rational solution φ(z) of A(z)φ(z) = 0. As indicated before,
such functions before the Floquet transform were compactly supported solutions of Au = 0.
This proves the first statement of the theorem, about the existence of compactly supported
eigenfunctions.

To prove completeness, we need to do a little bit more work. Let us denote by
Q1(z), . . . ,Qr(z) a finite set of the generators of all nonzero polynomial (vector-valued)
solutions of A(z)Q(z) = 0 (it is known to exist, e.g. [18 lemma 7.6.3, chapter VII]). Floquet
transform reduces the completeness statement we need to prove to the following: �

Lemma 9. Combinations

y(z) =
∑

j=1,...,r

aj (z)Qj (z), (17)

where aj (z) are finite Laurent sums, are L2-dense in the space of all C
|W |-valued L2-solutions

of the equation

A(z)y(z) = 0. (18)

Proof of the lemma. First of all, any L2(T
n)-function aj can be approximated by a finite

Laurent sum. Indeed, this is done by taking finite partial sums of the Fourier series of aj on
the torus T

n. So, it is sufficient to approximate any L2-solution y(z) of (18) by sums (17)
with L2 coefficients aj . Let k > 0 be the minimal (over z ∈ C

n or z ∈ T
n, which is the

same) dimension of Ker A(z). The set B ⊂ T
n of points z where dim Ker A(z) > k is an

algebraic variety of codimension at least 2, and hence has zero measure on T
n. Hence, it

is sufficient to do L2 approximation outside of small neighbourhoods of B. Let z0 ∈ T
n\B

and U be a sufficiently small neighbourhood of z0 not intersecting B. Then over (a complex
neighbourhood of) U the kernels Ker A(z) form a trivial holomorphic vector bundle. Let
fl(z) be a basis of holomorphic sections of this bundle. Then the portion of y over U
can be represented as

∑
bl(z)fl(z) with L2-functions bl . Now, one uses (18 lemma 7.6.3,

chapter VII) again to see that sums (17) with analytic aj approximate the sections fl . This
proves the lemma and hence the theorem. �
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The following observation is standard:

Proposition 10. If the periodic operator A is self-adjoint, then its spectrum has no singular
continuous part.

Indeed, the singular continuous part is excluded for such periodic operators by the standard
well-known argument (e.g., [14, 44], or the proof of theorem 4.5.9 in [22]).

Now the case of quantum graphs can be reduced to the combinatorial one, similarly to the
way described in [26].

Theorem 11. Let � be a G = Z
n-periodic (in the meaning already specified) quantum

graph equipped with the second derivative Hamiltonian and arbitrary vertex conditions at
the vertices. Then, existence of a nonzero L2-eigenfunction corresponding to an eigenvalue λ

implies existence of a compactly supported eigenfunction, and the set of compactly supported
eigenfunctions is complete in the eigenspace. If the vertex conditions are self-adjoint, the
spectrum of the Hamiltonian has no singular continuous part.

Proof. The first step is to make sure that λ stays away from the Dirichlet spectrum σD , which in
the case we consider is discrete. If by any chance λ ∈ σD , one can introduce ‘fake’ additional
vertices of degree 2 on the edges of the fundamental domain of the graph and then repeat
them periodically in such a way that the Dirichlet eigenvalues of the new shorter edges will
avoid λ. If one imposes Neumann conditions at these new vertices, their introduction does not
influence the operator at all. So, we can assume from the start that λ is not in σD . Let now
F be an L2-eigenfunction. Since we are away from the Dirichlet spectrum σD , resolvent and
trace estimates analogous to those in the proof of the previous theorem show that the vector
f = {F(v)} of the vertex values belongs to l2(V ) if and only if F ∈ L2(�). Since λ is not in
σD , by solving the boundary value problem for the eigenfunction equation HF = λF on each
edge separately in terms of the boundary values of F, we can express the derivatives of F at
each vertex in terms of its vertex values f solely. Thus, boundary conditions (which involve
the values of F and of its vertex derivatives) lead to a periodic finite-order difference equation
Af = 0 on the combinatorial counterpart of the quantum graph. Theorem 8 claims existence
and completeness of combinatorial compactly supported solutions. Reversing the procedure
(which is possible since we are not on the Dirichlet spectrum), we conclude existence and
completeness of compactly supported eigenfunctions of the quantum graph.

The part about the absence of singular continuous spectrum is standard (as for the
combinatorial graphs). �

Remark 12. Compactly supported eigenfunctions on graphs are sometimes called ‘scars.’
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